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Abstract A profound warming event in the Gulf of

Maine during the last decade has caused sea surface

temperatures to rise to levels exceeding any earlier

observations recorded in the region over the last

150 years. This event dramatically affected CO2

solubility and, in turn, the status of the sea surface

carbonate system. When combined with the concomi-

tant increase in sea surface salinity and assumed rapid

equilibration of carbon dioxide across the air sea

interface, thermodynamic forcing partially mitigated

the effects of ocean acidification for pH, while raising

the saturation index of aragonite (XAR) by an average

of 0.14 U. Although the recent event is categorically

extreme, we find that carbonate system parameters

also respond to interannual and decadal variability in

temperature and salinity, and that such phenomena can

mask the expression of ocean acidification caused by

increasing atmospheric carbon dioxide. An analysis of

a 34-year salinity and SST time series (1981–2014)

shows instances of 5–10 years anomalies in temper-

ature and salinity that perturb the carbonate system to

an extent greater than that expected from ocean

acidification. Because such conditions are not uncom-

mon in our time series, it is critical to understand

processes controlling the carbonate system and how

ecosystems with calcifying organisms respond to its

rapidly changing conditions. It is also imperative that

regional and global models used to estimate carbonate

system trends carefully resolve variations in the

physical processes that control CO2 concentrations

in the surface ocean on timescales from episodic

events to decades and longer.

Keywords Gulf of Maine � Ocean acidification �
Events � Global warming

Introduction

Global ocean acidification (OA) proceeds as rising

CO2 levels in the atmosphere (CO2ðatmÞ) lead to higher

oceanic carbon dioxide concentrations via uptake

across the air–sea interface. In surface ocean chem-

istry, the term ‘‘carbonate system’’ refers to a combi-

nation of species produced by the equilibria

CO2 !H2CO3 !HCO�3 !CO2�
3 ð1Þ

The uptake of atmospheric carbon over time perturbs

the carbonate system such that there is an increase in

surface ocean CO2 (CO2ðaqÞ) with a concomitant

reduction in surface pH. Since the beginning of the

industrial revolution, the world’s surface ocean has

decreased by about 0.1 pH units (Doney et al. 2009),
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and further reductions on the order of 0.2–0.3 pH units

are expected by 2100 (Feely et al. 2009). Reduction in

surface ocean pH due to increasing CO2ðatmÞ is not the

only effect on the carbonate system; additionally, OA

causes reductions in carbonate ion (CO2�
3 ) concentra-

tion and in the saturation states of calcium carbonate

minerals (X) (Bates et al. 2014). While there is still

debate on the direct role that CO2�
3 availability and its

proxy X play in shell development (Bach 2015; Jokiel

2016; Bednaršek et al. 2016), it is widely stated that

reductions in CO2�
3 and X represent a stressor to a

variety of marine invertebrates that fix their shells or

skeletons from calcium carbonate (e.g. Waldbusser

et al. 2015). How these chemical changes will prop-

agate into marine ecosystems is a subject of growing

concern.

The potential threat by OA on marine organisms is

of critical importance in the Gulf of Maine (GOM),

where much of the value from fishery landings

originates from potentially susceptible organisms such

as lobsters (Homarus americanus) and sea scallops

(Argopecten irradians), (Cooley and Kite-Powell

2009; Ekstrom et al. 2015). Declining pH, CO2�
3

concentrations, and the saturation state of the shell

buildingmineral aragonite (XAR), can affect organisms

in a variety of ways. The most cited impacts accrue

through decreased rates of calcification, particularly

during the larval phases of growth (e.g. Barton et al.

2012; Waldbusser et al. 2013), or via increased

respiration that can consume energy required for

mobility or reproduction (Gledhill et al. 2015). OA

can also affect an organism’s immune response, organ

development, and olfactory discrimination (Ekstrom

et al. 2015; Munday et al. 2009). Despite this knowl-

edge, the effects of OA on individual species and

community ecology are not well understood. While a

number of studies have been initiated to fill this

knowledge void, much of the work continues to be

done within the context of controlled experimental

studies rather than within functioning ecosystems. As

such, it is difficult to assess a species’ response to

multiple stressors or mitigative factors that may occur

in the natural environment (Breitberg et al. 2015).

In addition to OA, the carbonate system in coastal

waters is affected by varying fluxes of Dissolved

Inorganic Carbon ðDIC :
P
ðCO2ðaqÞ þ HCO�3 þ

CO2�
3 ÞÞ, total alkalinity (TA), and nutrients derived

from local or remote sources. These processes are

collectively known as coastal acidification and include

acidic river discharge (Salisbury et al. 2008), atmo-

spheric fluxes of acidic and alkaline compounds

occurring predominantly in coastal regions (Doney

et al. 2007), and coastal eutrophication. The latter is

attributable to land- and atmospherically-derived

nutrient fluxes that promote intense autotrophic pro-

duction with subsequent CO2ðaqÞ evolution and pH

reduction via heterotrophic respiration (Cai et al.

2011).

Physical processes in the GOM (e.g., strong tides,

wind-drivenmixing, coastal currents) and large annual

ranges in sea surface temperature (SST) and salinity

generate significant thermodynamic variability in the

carbonate system from diurnal to annual timescales.

Of particular importance is the pronounced annual

cycle of CO2ðaqÞ, whereby disequilibrium with the

atmosphere is partially balanced by an air sea flux of

DIC (Shadwick et al. 2010; Vandemark et al. 2011).

The GOM is therefore an ideal region to investigate

how the effects of varying SST and salinity on the

carbonate system relate to long-term trends driven by

OA. In a climatological study using data from 1950 to

2013, the GOM records an annual SST range of

15:5 �C and salinity range of 2.2 (Richaud et al. 2016).

The annual range alone elicits a significant change in

the carbonate system. For example, using approximate

mean GOM salinity (32.2), mean TA

(2184 lmol kg�1) and an atmospherically equilibrated

seawater surface of pCO2 (presently � 400 latm),

temperature alone produces an annual change of 0.013

in pH and 1.06 in XAR.

In this work we use simple data-driven decompo-

sition models to explore how the carbonate system is

affected by variability in SST, salinity, and its

covarying carbonate parameter, TA. We show that

over timescales of 5–10 years, such changes can

partially mitigate or overwhelm the effects of OA. The

variability imposed by thermodynamic changes is

described in several texts (e.g. Butler 1991; Stumm

and Morgan 1996). All carbonate dissociation and

calcite mineral solubility constants are dependent on,

and are modeled using temperature, and thus a change

in temperature will alter the relative proportions of

carbonate species.

Experimental determinations at constant TA, salin-

ity, and DIC show that the sensitivity of the partial

pressure of CO2ðaqÞ (pCO2ðaqÞ to temperature
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variability is 4:23% �C�1, a relationship that is con-

sistent over a majority of the world’s oceans (Taka-

hashi et al. 1993). Similarly, at typical GOM SSTs,

assuming no exchange of inorganic carbon with the

atmosphere, and a constant mean GOM TA, salinity,

and DIC, pH decreases in a nonlinear fashion at a rate

of 0.015–0.017 U �C�1. However given the rapid

equilibration timescales indicative of the adjacent

Northwestern Atlantic (1–4 months; Jones et al.

2014), in reality the system would lose DIC during

warming, which would mitigate the decrease, or even

raise pH. For contrast, at constant mean GOMTA, and

salinity, with pCO2ðaqÞ held at 400 latm, pH increases

slightly (� 0:001 U �C�1) due to the release of DIC.

As water temperature increases, the equilibrium in

Eq. 1 shifts to favor increases in CO2�
3 and XAR

(Dickson and Millero 1987). A dependency of XAR on

temperature is also due to the influence of temperature

on the apparent solubility product (Ksp). The Ksp for

aragonite decreases by � 0:4% �C�1 (Mucci 1983).

Over the range of observed GOM SSTs, assuming

rapid equilibration, this translates into aXAR change of

0.05–0.09 U �C�1. Salinity variability has a more

modest effect on the carbonate system of seawater by

changing the ionic strength of the solution (Harris

2010), which decreases activity coefficients and, as a

result, the values of pH, and XAR. Tracking salinity

also enables regional modeling of the quasi-conser-

vative TA (e.g. Lee et al. 2006; Cai et al. 2010) that

can be used as one of two parameters needed to resolve

the full carbonate system (Wolf-Gladrow et al. 2007).

Within the GOM, the decade spanning 2005–2014

was characterized by an extreme warming event with

average SST increasing by over 0:2 �Cy�1. Satellite
observations of SST within the GOM show that the

region was warming at a faster rate than 99% of the

global ocean (Pershing et al. 2015), with the highest

average annual values exceeding over 150 years of

observations held in NOAA’s Merged Land-Ocean

Surface Temperature Analysis database (Vose et al.

2012). The warming initiated ecosystem changes that

included a northward (or deeper) shift in the distribu-

tions of many planktonic and nektonic organisms as

they sought out suitable temperatures (Nye et al. 2009;

Fogarty et al. 2012). Enhanced warming was accom-

panied by an increase in salinity that is consistent with

a change in water mass distribution related to a retreat

of the Labrador Current and a northerly shift of the

Gulf Stream as described in Saba et al. (2016) and

Grodsky et al. (2017).

We describe the relationship between physical

variability and the carbonate system in the GOM

during a time span over which large changes in SST

and salinity were observed. Our main emphasis seeks

to quantify the effects that recent extreme environ-

mental conditions played in driving changes in pH and

XAR and to highlight the difficulties that variability in

physical drivers may cause in resolving longer-term

trends in OA. The work is structured as follows.

‘‘Description of study region, methods, and data’’

section describes the observations of SST, salinity,

and carbonate parameters in the GOM, as well as the

model framework and algorithms used to determine

carbonate system variability. ‘‘Results’’ section ex-

amines the causes of variability in the carbonate

parameters by decomposing the model into compo-

nents that highlight atmospheric versus physical

influences. We discuss the implications of the recent

heating event and sub-decadal variability in terms of

potential ecosystem stress and the longer-term trends

in OA in ‘‘Discussion’’ section.

Description of study region, methods, and data

Site description

The GOM is a productive temperate continental shelf

sea bounded by Cape Cod to the south and Nova Scotia

to the northeast (Fig. 1). It is well known for its large

semidiurnal tides and their resulting impact on mixing,

and also for the high commercial value of its fish and

shellfish landings. It is separated from the open

northwest Atlantic by both Georges and Browns

Banks. Considerable control on seasonal to inter-

annual circulation patterns is exerted via shelf-sea

exchange through the northheast Channel (NEC)

which separates Georges and Browns Banks from

the fresher coastal source waters on the Scotian Shelf

(Townsend 1991; Pringle 2006; Hetland and Signell

2005; Geyer et al. 2004; Feng et al. 2016). The GOM

has an average tidal range [ 3:0m, and experiences

large seasonal amplitudes in surface salinity (Geyer

et al. 2004), net primary productivity (O’Reilly et al.

1987), SST and pCO2ðaqÞ (Vandemark et al. 2011).

The key circulation feature impinging on the region is
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the Maine Coastal Current (MCC), which flows

counterclockwise and delivers freshwater and con-

stituents from the northeast along the coast and into the

Gulf (Pettigrew et al. 2005).

Data preparation

We base our study on a combination of data sources

that include output from a physical General Circula-

tion Model (GCM) for salinity; satellite-derived SST

and chlorophyll, and pCO2ðaqÞ observed in the GOM.

The carbonate system is modeled using thermody-

namic equilibrium equations as described in the

Handbook of Methods for Analysis of the Various

Parameters of the Carbon Dioxide System in Seawater

(Dickson and Goyet 1994):

½CO2�� þ ½H2O� () ½Hþ� þ ½HCO�3 �
() ½Hþ� þ ½CO2�

3 �;
ð2Þ

with the apparent dissociation constants

K1 ¼ ½H
þ�½HCO�3 �
½CO2ðaqÞ��

and K2 ¼ ½H
þ�½CO2�

3 �
½HCO�3 �

; ð3Þ

where brackets represent the stoichiometric concen-

trations of the chemical species and [CO2ðaqÞ*] repre-

sents the sum of the combined concentrations of

CO2ðaqÞ and H2CO3.

A full description of the carbonate system requires

salinity, temperature, pressure, and two carbonate

parameters—in this study TA and pCO2ðaqÞ. Total

scale pH andXAR are subsequently estimated using the

CO2SYS package (Lewis et al. 1998). The K1 and K2

constants are based on Mehrbach et al. (1973) and

refitted by Dickson and Millero (1987), with the

borate-to-salinity ratio of Uppström (1974). Alkalinity

modifications by phosphate and silicate are assumed to

be negligible. The saturation state with respect to

aragonite is defined as

XAr ¼
½Ca2þ�½CO2�

3 �
Ksp

ð4Þ

Fig. 1 Regionmap and grid of the model used in this study. The Gulf ofMaine domain is shown as black grid nodes and periphery areas

as red. Locations of present or former NERACOOS buoys used for validation shown in green. (Color figure online)
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where Ca2þ and CO2�
3 are the molar concentrations of

calcium and carbonate ions in solution, and Ksp is the

solubility product of the mineral aragonite that is

modeled as a function of in situ temperature, salinity,

and pressure.

Data and algorithms

Our analyses are performed on time series data that

begin in September 1981 and run through December

2014. All spatially resolved datasets are averaged over

the GOM domain to generate integrated system-wide

time series with a monthly temporal resolution. SST is

based on the 1=4� daily Optimum Interpolation Sea

Surface Temperature Version 2 (dOISSTv2), which

combines observations from satellites, ships, and

buoys into a blended product on a unified grid. The

main data sources are NOAA’s Advanced Very High

Resolution Radiometer (AVHRR) 7–19 satellites. The

resulting product typically has an average root-mean-

square error (RMSE) of 0:3 �C compared to buoy data

(Banzon et al. 2016; Reynolds and Chelton 2010).

Salinity is derived from the Northeast Coastal

Ocean Forecast System (NECOFS). NECOFS is an

integrated atmosphere-ocean model forecast system

designed for the Northeast US coastal region covering

a computational domain from the southern part of

Long Island Sound to the northern part of the Scotian

Shelf (Li et al. 2017). The system includes the

mesoscale Weather Research and Forecasting model

(WRF) and the unstructured grid Finite-Volume

Community Ocean Model (FVCOM-GOM, Chen

et al. 2006) GCM. The FVCOM-GOM grid covers

the GOM region and is enclosed by an open boundary

running from the Delaware Shelf to the Scotian Shelf.

The horizontal grid has a resolution (measured by the

length of the longest edge of a triangular cell) that

varies from 0.3 to 15 km over the entire domain. The

resolution in the Bay of Fundy ranges from 0.5 km

inside inlets to 2.0 km along the coast and 4.0 km in the

interior of the Bay. NECOFS is a product of the

Northeast Regional Coastal Ocean Observation Sys-

tem (NERACOOS), with support from the Mas-

sachusetts Fishery Institution and the MIT Sea Grant

Program. The salinity time series is validated using

data from five NERACOOS moorings in the GOM

(Fig. 1). We use monthly averages for each buoy and

perform a point-to-point comparison with each nearest

grid cell in the model. We note that uncertainty of

salinity (Table 1) can be considered conservative due

to spatial and temporal mismatches between buoy and

modeled data.

Time series of chlorophyll (Chl) are made using

data from the NASA satellites’ Coastal Zone Color

Scanner (CZCS 1981–1986, NASA Goddard Space

Flight Center 2014a), the Ocean Color-Temperature

Satellite (OCTS 1996, NASA Goddard Space Flight

Center 2014c), the Sea-Viewing Wide Field-of-View

Sensor (SeaWiFS 1997–2002, NASA Goddard Space

Flight Center 2014d), and the Moderate Resolution

Imaging Spectroradiometer (MODIS-Aqua 2002–pre-

sent, NASA Goddard Space Flight Center 2014b).

4 km Level 3 mapped monthly-mean fields from the

processing version 2014.0.1QL are matched to the

FVCOM grid by identifying the satellite grid cell with

which each node in the FVCOM grid overlaps. Time

gaps between CZCS and OCTS, and OCTS and

SeaWiFS, are filled by using a monthly climatology

based on the three previous years before and the

3 years after the gap (Fig. 2, third panel from top).

Zonal averages (40�N–50�N) of marine atmo-

spheric boundary layer mole fraction of CO2 (xCO2)

from 1981 to 2014 were acquired from the NOAA

Earth System Research Laboratory GLOBALVIEW-

CO2 database (Masarie and Tans 1995). Atmospheric

CO2 partial pressure (pCO2ðatmÞ) was estimated as

pCO2ðatmÞ ¼ XCO2 (SLP-pH2O). Sea level pressure

(SLP) was set to 1 standard atmosphere (1013.25mb),

and water vapor pressure (pH2O) was calculated as a

function of mean monthly GOM SST according to the

empirical formula described by Cooper et al. (1998).

TA is modeled as a function of salinity and

dOISSTv2 temperature data according to the North

Atlantic model of Lee et al. (2006, Table 1, Fig. 2).

Model output was compared to all surface TA data

found in the National Centers for Environmental

Information (n ¼ 2140) producing an RMSE of

11:4 lmol kg�1 (Table 1).

pCO2ðaqÞ algorithm

pCO2ðaqÞ is modeled by deriving a relationship

between SST, salinity, Chl, day of year, and observed

pCO2ðaqÞ based on a modification of methods pre-

sented by Signorini et al. (2013). The Signorini et al.

algorithm performed reasonably well with modeled
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CO2ðaqÞ showing an RSME 34:6 latm for the GOM

region. Our algorithm is a multiple linear regression of

a similar form, i.e.:

pCO2 ¼ f yd0; K0 � K0

� �
; log10ðChlÞ � log10ðChlÞ
� �� �

þ slopeðyear � 2004Þ
ð5Þ

where K0 is the solubility for CO2ðaqÞ and Chl is

satellite chlorophyll. K0 and Chl are system-wide

mean values for the data set. yd0 is the fit of a third

order Fourier function that models a daily climatology

of GOMpCO2ðaqÞ based on day of year. The slope term

represents the annual derivative of the atmospheric

pCO2ðaqÞ estimates for the North Atlantic region.

These data have been smoothed by 3 months to

account for the estimated time required for CO2ðaqÞ to

equilibrate into the surface ocean in our region (Jones

et al. 2014).

Training data for the multi regression model of

pCO2ðaqÞ are taken from the Surface Ocean CO2ðaqÞ
Atlas (Bakker et al. 2016) within our domain. In an

effort to avoid extreme pCO2ðaqÞ values found in

Table 1 Uncertainty of modeled parameters

Parameter Uncertainty Data sources

SST 0:3 �C Banzon et al. (2016) and Reynolds and Chelton (2010)

Salinity 0.49 ‘‘ GOM buoys vs FVCOM model fields’’ section

TA 11:4lmol kg�1 ‘‘Unpublished observations vs Lee model’’ section

pCO2ðaqÞ 20:7latm ‘‘SOCAT data vs modified Signorini model’’ section

XAR 0.070 ‘‘Monte Carlo simulation’’ section

pH 0.015 ‘‘Monte Carlo simulation’’ section

Uncertainties are measured as root mean square error (RMSE) defined as

Pn

i¼1 y�xð Þ2

n
, where x are observations, y model estimates, and

n the number of observations

Fig. 2 System-wide

climatologies of time series

data used for model

development. Top panel:

salinity from FVCOM;

second panel: SST from

dOISSTv2, the red curve

shows annual averages;

third panel: satellite derived

Chl, the grey box highlights

the time period when no

ocean color sensors were

available and monthly

climatology from 3 years

before and after fills the gap;

bottom panel: monthly mean

values of the SOCAT V5

database in the GOM

domain (blue), underlain by

pCO2ðaqÞ model output

described in the text (green).

(Color figure online)
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regional river plumes (Cai et al. 2010; Salisbury et al.

2009), we remove all pCO2ðaqÞ data measured at

salinities \30:5. Further, to avoid disproportionate

effects from extreme outliers, we remove data below

and above the 1 and 99 percentiles respectively. The

resulting data set contained 200 784 values. These data

were averaged by month prior to regression analysis.

Model coefficients, results, and uncertainty are found

in Fig. 2 and Table 1.

Our approach differs from that of Signorini et al.

(2013) in three ways. First, we substitute SST and

salinity with K0, a function of temperature, salinity,

and pressure (Weiss 1974). This approach provides a

better linear relationship compared to the non-linearity

that changing temperature imposes on CO2ðaqÞ solu-

bility. Second, instead of a simple sine function for day

of year, we use yd0, which represents a better

approximation of the annual pCO2ðaqÞ cycle. Finally,

we base the trend in CO2ðatmÞ on observations instead

of the linear increase of 1:68 latm y�1 used in

Signorini et al. (2013). While the average linear slope

determined here is similar (1:78 latm y�1), our

approach accounts for the non-linear increase in

CO2ðatmÞ over time (Fay and Mckinley 2013).

Monte Carlo simulations

The uncertainties of XAR and pH are estimated via

10,000 Monte Carlo simulations using SST, salinity,

TA, and pCO2ðaqÞ data with accompanying uncertainty

(standard deviation) values (Table 1). Prior to analy-

sis, single-sample Kolmogorov–Smirnov tests were

performed on each variable to verify the data were

normally distributed.

Anomalies and sensitivity analysis

To better elucidate long-term trends and short-term

variability obscured by the seasonal cycle, we use

2004 as a reference to which we compare all other

data. This year is noteworthy, as it represents the

beginning of the recent extreme warming event

(Pershing et al. 2015). The modeled time series of

TA, pCO2ðaqÞ, salinity, and SST are used to construct

time series of XAR and pH. Anomalies are calculated

by removing mean monthly values in 2004 from all

other years, month by month. We use the resulting

time series to estimate the sensitivity ofXAR and pH to

variability imposed by OA, the effects of variable TA,

and the combined effects of SST and salinity vari-

ability, the latter which are intended to track the

variability of carbon dioxide solubility. For this work,

we narrowly define OA as the changes to the carbonate

system brought about by the increase in sea surface

pCO2ðaqÞ that are directly attributable to increasing

CO2ðatmÞ.

To understand the relative contribution of changes

in pCO2ðaqÞ, TA and combined SST and salinity on pH

and XAR variability, we perform the decompositions

shown in Eqs. 6 and 7. The partial derivatives quantify

changes in pH and XAR attributable to incremental

changes in pCO2ðaqÞ, TA, and P, the last, which

represents the combined temperature and salinity

effects intended to track changes in CO2ðaqÞ solubility

(Eq. 8), with f representing the parameter of interest

(i.e. pH or XAR).

D½pH� ¼ dpH
dpCO2

DpCO2 þ
dpH
dTA

DTAþP ð6Þ

D½XAR� ¼
dXAR

dpCO2

DpCO2 þ
dXAR

dTA
DTAþP ð7Þ

P ¼ dn
dSST

DSST þ dn
dSalinity

DSalinity

� �

ð8Þ

The sensitivity to each variable is calculated by

holding each of the other components constant

(Table 2). The constant values are based on mean

data for each month of our reference year, 2004. Our

approach produces monthly time series showing the

relative contributions of ocean acidification, variable

TA and the combined effects of variable SST and

salinity, referenced to each month of 2004. We

investigate the behavior of OA on XAR and pH

(Table 2) by imposing the atmospheric pCO2ðatmÞ
smoothed by 3 months, to account for CO2ðaqÞ
equilibration.

Results

The annual cycle of carbonate parameters

Our results are affected by the combination of seasonal

cycles, interannual variability, and decadal-scale

changes. These different scales are evident in Fig. 2
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(e.g. salinity), where full time series of the data used

for model parameterization are presented. The sea-

sonal cycles of these variabiles are detailed in Fig. 3,

where the upper right panel highlights the annual cycle

of SST, ranging from a low of\4 �C in February and

March to a mean high of 18 �C in August. Salinity

(upper left) has a range of � 1:5 from a low of 31.0 in

July to a high of 32.5 in November. The cycle of

satellite Chl (bottom right) shows a peak in April,

which corresponds to the maximum rates of net

primary production (e.g. Behrenfeld and Falkowski

1997; Friedrichs et al. 2009). While not apparent in

the climatology, a smaller, shorter duration, peak

corresponding to a fall bloom, is often observed during

September or October (e.g. Riley 1947; Townsend and

Spinrad 1986; Thomas et al. 2003).

Table 2 Description of sensitivity analyses

Process Modeling concept Description

Combined SST and

SSS effects (P)

TA and pCO2ðaqÞ held constant Response caused by heat flux, net freshwater

flux and ocean circulation

TA effects SSS, SST, and pCO2ðaqÞ held constant Response caused from changes in TA

Ocean acidification

effects

Salinity, SST, and TA held constant; pCO2ðaqÞ increases

proportional to atmospheric values

Response from increasing CO2ðatmÞ
equilibrating into surface water

First column, process examined; second column, model method during sensitivity analyses; third column, description of process

examined

Fig. 3 Annual cycles of data used for model parameterization.

Boxplots show median value (white dot), 25th and 75th

percentiles (black bar) and range of data (vertical line), with

statistical outliers not shown. Salinity (top left), pCO2 (top right)

and SST (bottom left) taken from the SOCAT V5 database, with

log Chl data taken from ocean color sensors coincident with the

SOCAT data
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This combination of seasonal variability in salinity,

SST, and net production controls much of the annual

cycle of pCO2ðaqÞ in the GOM and is largely consistent

with the seasonal dynamics described by Vandemark

et al. (2011), who have suggested that changes in

pCO2ðaqÞ are controlled by the countervailing annual

cycles of solubility and net biological process. The

biological ‘‘new year’’ begins with an intense spring

phytoplankton bloom that typically extends from

March to May. By removing DIC, the spring bloom

generates the most significant perturbation to pCO2ðaqÞ
throughout the year. Following the bloom, surface

water warms, promoting an increase in pCO2ðaqÞ.

Changes in K0 due to the summer warming are

expected to increaseXAR and decrease pH. The annual

salinity cycle, which controls TA, imposes a modest

modulation of pCO2ðaqÞ via buffering of the carbonate

system, leading to slightly higher pCO2ðaqÞ values

when the salinity is low and vice versa. A fall bloom

may also cause a slight reduction in pCO2ðaqÞ via

uptake of DIC. As winter approaches, the water

becomes well mixed, entraining deeper waters with

higher DIC concentrations to the surface, raising the

pCO2ðaqÞ, while lowering XAR and pH (Wang et al.

2017).

Anomaly analyses

Our anomaly analyses (Fig. 4) show that pH (lower

panel) exhibits a markedly different behavior thanXAR

(top panel). pH declines at an average rate of

0:0018 y�1 from 1981 to 2015, primarily in response

to the OA signal imposed on the carbonate system by

increasing atmospheric pCO2ðaqÞ. The effect of OA on

XAR is partially obscured because of their greater

sensitivity to variations in SST and salinity. Both

parameters show significant interannual variability

caused by differential timing and magnitude of the

seasonal cycle in SST, salinity, and net community

production relative to 2004. It is notable that XAR

shows a higher interannual variability (often [ 5%,

lXAR ¼ 1:96) than pH (� 1%, lpH ¼ 8:06). The

long-term trend in pH is not entirely consistent over

the full time series, but varies on decadal scales with

patterns in the SST and salinity data (see Fig. 4). For

example, the time periods 1981–1987, 1995–2001,

and 2004–2014 show considerable deviation from the

long-term trend 1981–2015 driven by OA (i.e. pH ¼
� 0:018 and XAR ¼ � 0:065 per decade, Table 3, See

OA). The decadal variability is more pronounced for

XAR, which is dominated by the variation in TA and

combined SST and salinity, with less dependence on

the OA signal.

Sensitivity analyses

By modeling the carbonate system while holding

certain terms constant, we are able to investigate in

greater detail how specific processes affect carbonate

parameters. Figure 5 shows results from these analy-

ses. We note the annual amplitude of each curve is

partially affected by our choice to hold variables

relative to each month of 2004. While OA imparts a

signal into each parameter, the effect is most signif-

icant for pH (Table 3). The trends in TA perturbations

are significant when the entire time series is viewed

(Table 3), but are even more pronounced when the

data are divided into sub-decadal periods from 1991 to

Fig. 4 Anomalies relative

to monthly 2004 data. XAR,

(top panel), and pH (bottom

panel). Each time series was

estimated in CO2SYS using

modeled pCO2ðaqÞ, TA, SST

and salinity. Month by

month values for 2004 were

subtracted from the time

series to produce the

anomalies. The grey bar

highlights data for 2004,

zeroed out by subtraction
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1997 and 2004 to present, intervals that correspond to

salinity anomalies in the GOM (Table 4).

The combined effects of SST and salinity on pH

produce small but significant changes over all time-

scales considered (Tables 3, 4) with the sign of pH

Table 3 Data perturbations and resultant decadal change and uncertainty of slope over the entire data range (1981–2014)

Perturbation Parameter Average decadal change (confidence interval)

No perturbation XAR - 0.049 (± 0.009)

pH - 0.018 (± 0.0005)

OA XAR - 0.065 (± 0.009)

pH - 0.018 (± 0.0021)

TA XAR - 0.007 (± 0.004)

pH - 0.0006 (± 0.0003)

SST and salinity XAR 0.025 (± 0.006)

pH 0.003 (± 0.0012)

Uncertainty is estimated as confidence intervals at p\0:05 and presented in parentheses. Note that the decadal change attributable to

temperature and salinity variability is positive

Fig. 5 The sensitivity of

XAR (top panels) and pH

(bottom panels), to OA (left

panels), variable TA (center

panels) and combined

effects of variable SST and

salinity (right panels). Slope

information for various time

intervals can be found in

Table 4

Table 4 The response of XAR and pH to perturbations by acidification, variable TA, and combined variability of SSS and SST over

specific time ranges with high variance in SST and salinity

Time range Parameter Decadal change

OA TA SST and SSS

1981–1987 XAR - 0.057 (± 0.0187) - 0.092 (± 0.0611) 0.020 (± 0.0001)

pH - 0.016 (± 0.0006) - 0.002 (± 0.0014) 0.002 (± 0.0005)

1991–1998 XAR - 0.053 (± 0.0077) n/a - 0.115 (± 0.0276)

pH - 0.015 (± 0.0006) 0.003 (± 0.0009) - 0.008 (± 0.0020)

2004–2015 XAR - 0.070 (± 0.0023) 0.156 (± 0.0305) 0.066 (± 0.0180)

pH - 0.020 (± 0.0003) n/a 0.0037 (± 0.0013)

Confidence intervals are shown in parentheses as estimated at p\0:05. n/a indicates that the slope is not significant

123

410 Biogeochemistry (2018) 141:401–418



change being negative or positive depending primarily

on the direction of the SST change. The combined

effects of SST and salinity cause large variability in

XAR at all time intervals except for 1991–1998

(Table 4). We note that the curves describing the

sensitivity of XAR to TA and combined salinity and

SST share similarities for two reasons. First, the TA

values and their corresponding buffering capacity are

dependent on salinity and, to a lesser degree, temper-

ature (Lee et al. 2006). Second, as discussed in the

introduction, decadal variability in SST and salinity

often covary due to the interplay between fresher

water entering from the north, and warmer waters from

the south, with warming accompanied by an increase

in salinity (and alkalinity) and vice versa. Both

warming and increased alkalinity will increase XAR.

Using mean annual values, we assess the respective

contribution by acidification and other effects to recent

trends in pH and XAR. Figure 6 shows a subset of the

sensitivity analyses that focus on the extreme warming

and salinity event spanning from 2004 to 2014. The

figure demonstrates the magnitude of the OA signal

relative to all other effects considered here (TA, SST

and salinity). During this time OA is clearly the

dominating factor affecting the trend in pH, whereas

XAR is mainly influenced by the other factors (cf.

Table 4). These distinctions can also be see in annual

mean of the time series in Fig. 7.

Discussion

Over sufficiently long timescales it is understood that

the oceanic carbonate system will respond propor-

tionally to increasing DIC brought about by OA.

Several recent studies have presented results showing

OA to be the predominant driver of trends in pH

(Lauvset et al. 2015), pCO2ðaqÞ (Fay and Mckinley

2013; Turi et al. 2016), and XAR (Jiang et al. 2015).

However, trends in these parameters are often found to

be larger or smaller than that expected by OA alone.

Sensitivity analyses by these investigators demon-

strate that processes such as net warming, variable

salinity, and upwelling affect the rate of change over

time and space. This is particularly true in coastal

regions (Turi et al. 2016), where upwelling and

freshwater inputs can affect the variability of the

carbonate system and increase the length of time series

needed to detect statistically distinct differences in the

rate of change (Fay and Mckinley 2013; Tjiputra et al.

2014).

Because of the climatological, geographical, and

hydrological characteristics found in the GOM and its

surrounding watersheds, we expect the OA signal to be

modulated by physical forcing. This forcing can occur

over sub-daily timescales such as the case in which

heat flux or mixing of water masses rapidly change the

distribution of carbonate parameters. Figure 6 shows

an example occurring at the decadal scale where the

OA signal dominates the variability of pH, but forXAR,

Fig. 6 A comparison of

ocean acidification effects

(blue bars) versus all other

effects (green bars) for XAR,

(top panel) and pH (bottom

panel) from 2004 to 2014.

Acidification is the

dominant cause of

variability in pH during this

period. However the

combination of variable TA,

SST and salinity overwhelm

the acidification signal for

XAR. (Color figure online)
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the OA signal is overwhelmed by other factors. Over

this time period, thermodynamic forcing partially

mitigated the effects of OA for pH, while XAR

increased by an average of 0.14 U. We note that

physical forcing leading to a change in surface

pCO2ðaqÞ would also alter the disequilibrium of

pCO2ðaqÞ with the atmosphere, initiating a change in

the rate of the net CO2ðaqÞ flux. Although we could find

no published information describing the timescales of

mixed layer equilibration of CO2ðaqÞ in the GOM, we

assume that it is similar to or less than the adjacent

Western Atlantic that exhibits timescales of 1–4

months due to the relatively high gas transfer veloc-

ities and moderate mixed layer depths found in the

GOM (Jones et al. 2014; Galbraith et al. 2015). Such

short equilibrium timescales would mean that

increases in surface pCO2ðaqÞ due to warming are

accompanied with rapid removal of DIC across the

air–sea interface while pCO2ðaqÞ remains higher than

pCO2ðatmÞ. The opposite would be true during cooling.

In the case of heating (increased pCO2ðaqÞ), the

removal of DIC would raise the ratio of TA:DIC and

in turn, modulate the change in pH and XAR to higher

values. Thus we speculate that thermodynamic forcing

with subsequent gas exchange plays a major role in

regulating the status of the carbonate system in the

GOM.

Our results demonstrate that pH and XAR in the

GOM respond to OA, but are also sensitive to

thermodynamic (net heating) and chemical (TA)

variability. The magnitude of response to each process

is dependent on the parameter and the conditions to

which the parameters are subjected. For example, pH

demonstrates significant correlation with OA over the

full time series (r2 ¼ � 0:95, p\0:001) (Fig. 4,

Table 3). However, pH is less correlated with OA

during periods with high overall variability (Table 4),

owing to greater influences in variability of SST,

salinity and TA. XAR is also affected by OA, but is far

more sensitive to relative changes in temperature and

salinity than pH (Tables 3, 4). Over the entire time

range, and for each parameter, the effect on the

carbonate systems by TA variability alone generates

significant decdal-scale trends (Table 3). Since the

distributions of TA closely follow salinity patterns,

TA is primarily controlled by decadal scale salinity

anomalies (Petrie and Drinkwater 1993) that can be

1980 1985 1990 1995 2000 2005 2010 2015

1.8

1.9

2

2.1

2.2

ar

1980 1985 1990 1995 2000 2005 2010
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8.06

8.08

8.1
pHtot

2015

ar

p
H

to
t

Fig. 7 Annual means of

XAR, (top panel) and pH

(bottom panel), intended to

demonstrate interannual and

decadal scale variability in

XAR. Note that data from

1981 have been eliminated

since it was not an entire

year
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linked to the upstream discharge of the Saint Lawrence

River and the behavior of Arctic water masses

(Khatiwala et al. 1999), as well as inputs of warm

salty slope waters originating from the South (Saba

et al. 2016; Townsend et al. 2015). This control has

important implications in that discharge from local

watersheds to the GOM has been increasing over the

last four decades (Huntington et al. 2016; Huntington

and Billmire 2014), and with higher precipitation than

under current conditions expected in the future

(Rawlins et al. 2012), local discharge could continue

to increase. The possibility of fresher surface waters in

the GOM from both regional and remote sources

implies that TA could decrease together with the

TA:DIC ratio, and as a consequence, pH and XAR

would also decrease.

The sensitivity to temperature shown by XAR

highlights the degree to which interannual warming

and cooling events influence longer-term trends. The

last decade’s warming and increasing salinity event

has had a dramatic effect on XAR that is [ 2:5 times

greater than that of OA alone (Fig. 6, Table 4). Put

another way, the changes in salinity and SST linked to

the recent event actually served to mitigate the

equivalent of 25 years of decline from OA. We note

that if this event had instead contributed fresher and

cooler waters, the effect would have reversed and

greatly exacerbated the impact of OA. While the

perturbations in salinity and SST over the last decade

are extreme in our data set, smaller SST and salinity

fluctuations capable of affecting the consecutive

interannual means of XAR ([ 	 5%) can be found

throughout the time series (Fig. 7). By contrast, such

variability is an order of magnitude greater than the

interannual variability in the offshore surface waters

of the Atlantic and Pacific Oceans (Jiang et al. 2015).

The hidden signal of ocean acidification

While OA is clearly decreasing XAR and pH, it is

difficult to observe this signal without sufficiently long

time series (Fay and Mckinley 2013; McKinley et al.

2017; Henson et al. 2016). Because the strong sea-

sonality and vigorous physical processes serve to

attenuate the OA signal in the GOM, we seek to

understand how long a time series of observations

would need to be in order to observe the expression of

OA. One can evaluate the degree to which total

variability obscures the OA signal by estimating the

time it would take for the current trend in OA to

emerge from the background variability caused by

biological and physical processes affecting the car-

bonate system. One simple approach, termed Time of

Emergence (ToE), is designed to detect biogeochem-

ical signals in the context of noise imposed by other

natural processes (Keller et al. 2014). ToE is defined

as

ToE ¼ 2r
jSj ; ð9Þ

where S is the absolute value of the slope of the trend

of interest and r is the variance (standard deviation) of

the observed time series. Doubling r implies that the

signal emerges through twice the observed variability

and that ToE will be estimated at the 95% confidence

level. Assuming an average positive trend of

1:78 latm pCO2ðaqÞ y
�1 based on increasing CO2ðatmÞ,

our results for the OA simulations provide annual

linear trends (S) for pH (� 0:0018 y�1), and XAR

(� 0:0065 y�1), over the entire time range (Table 3).

We calculate ToEs for pH and XAR based on

imposition of the calculated slopes and r for the entire

time series, as well as partial time series in 11-year

increments starting in January 1982. After eliminating

the partial year of 1981, 11-year intervals represent 1/3

of the dataset. When calculated over the entire time

series using annual averaged data (cf. (Keller et al.

2014)), we find our estimate of ToE for pH in the GOM

is longer (approximately 20 years vs 14 years). We

speculate that the main reason for this difference is the

result of using higher fidelity data to model pH, which

imparts greater variance in the ToE estimate.

When based on monthly data and its full variance,

longer ToE values are estimated (Table 5). We also

find that the ToE for XAR is considerably longer than

Table 5 Time of emergence in years for pH and XAR based on

time series over different time intervals

Time interval Omega pH

1981–2014 102.0 (0.33) 35.6 (0.033)

1982–1992 97.5 (0.31) 32.3 (0.029)

1993–2003 103.4 (0.34) 36.0 (0.032)

2004–2014 100.7 (0.32) 28.4 (0.025)

The standard deviation (r) of each time series is indicated in

parentheses
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for pH, particularly for time intervals with high

variance. Indeed, given the variability seen over the

last 34 years, application of Eq. 9 to the data suggests

it could take up to a century of observations for an OA

signal to emerge in XAR. The differences in ToEs for

different intervals are consistent with our findings that

variability in pH is dominated by the OA signal, while

XAR responds more strongly to perturbations arising

from both OA and thermodynamic variability that

operates over interannual to decadal timescales. Such

results point to difficulties in trend analyses when

using inadequately long time series or data of poor

temporal resolution that are averaged annually. Fur-

ther, the ToE estimate used here cannot provide a date

at which the data set will reveal that OA is actually

dominating the biogeochemical signal, but instead can

only indicate the time it would take for the imposed

slope to emerge through the variance. For example,

trend analyses performed with the last interval of our

data set (2004–2014) may conclude that XAR is

steadily increasing, while over the longer time span

it is actually decreasing in response to OA.

The fact that the ToEs estimated for the GOM are

longer than for than many ocean regions described in

Keller et al. (2014) highlights the importance of

understanding how local physical and biological

processes affect the carbonate system. In our data

XAR shows an annual range between 0.7 and 1.05 in

our time series, which is more than twice as large as

what is typically observed at open ocean sites such as

the Hawaii Ocean Time Series (Doney et al. 2009).

The annual cycle of SST and salinity (with its

attendant TA change), can account for most of the

observed variability (see Fig. 2, top panels). When

extreme events like the one experienced over the last

decade are added to the seasonality in SST and

salinity, the range of XAR values experienced by

calcifying ecosystems becomes even larger. An

important finding from these analyses centers on the

need for long-term sustained observations in order to

establish OA treands and to distinguish the different

effects that chemical, physical and biological pro-

cesses have on the observed signals and trends.

Presently such time series are rare, with few (e.g.

Hawaiian Ocean Time Series; Bermuda Atlantic Time

Series) possessing the required data holdings neces-

sary to resolve the drivers of carbonate system

variability.

Potential significance to ecosystems

Questions arise concerning how rapid changes in the

carbonate system may affect calcifying ecosystems.

Many organisms have life histories that start in the

water column prior to settlement in the benthos, and

these early stages may have distinct sensitivities to

surface carbonate parameter thresholds (Waldbusser

and Salisbury 2014; Waldbusser et al. 2015). For

example, Salisbury et al. (2008) have shown slower

shell formation and growth in larvae of the commer-

cially harvested GOM clam species Mercenaria

mercenaria when XAR\1:6.

Sutton et al. (2016) investigated present-day

coastal XAR distributions using pH and pCO2ðaqÞ data

from several buoyed assets, including the Coastal

Western GOM Mooring, located at 43:02�N,
70:54�W. They also modeled preindustrial values,

making assumptions about pCO2ðatmÞ values of the

past. One finding was that during preindustrial times,

XAR never dropped below the 1.6 threshold at the

GOM site. However, in present day conditions the

threshold is exceeded in the coastal GOM 11–31% of

the time from December through April, with peak

exposure to lowXAR in February andMarch.While the

average SSTs during this time are typically below the

11 �C necessary to initiate clam spawning (Ropes and

Stickney 1965), continued warming in combination

with OA could create conditions where larval shellfish

are exposed more frequently to suboptimal XAR,

leading to less growth. While it is beyond our scope

to speculate whether the recent events could have

affected ecosystem function, we note that during the

last decade, surface ocean ecosystems in the GOM

have been exposed to an XAR range that contains

nearly the entire envelope of values observed over the

34-year time series (exposure range since 2004 = 1.2;

time series max–min = 1.3). To assess whether an

ecosystem or species is at risk or aided by such events,

it is important to characterize the drivers and ranges of

chemical conditions over periods of low and high

variance, and to better account for organismal

responses to such conditions.

Our work highlights the importance of long-term

monitoring of coastal ecosystems, especially those in

ecosystems like the GOM that experience high

variability at multiple timescales. Only time series

data taken at regular intervals and over decades enable
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us to overcome signal-to-noise issues, thereby allow-

ing the identification of extreme events and the

separation of signals into those affected by physical,

biological, and OA processes. Because long-term

observation assets are costly to deploy and maintain, it

is incumbent upon the ocean carbon modeling com-

munities to continue efforts to resolve variations in the

physical processes that control CO2ðaqÞ on timescales

from episodic events to decades and longer.
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